Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; : 116230, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643905

RESUMO

One of the effective therapeutic strategies to treat rheumatoid arthritis (RA)-related bone resorption is to target excessive activation of osteoclasts. We discovered that 6-O-angeloylplenolin (6-OAP), a pseudoguaianolide from Euphorbia thymifolia Linn widely used for the treatment of RA in traditional Chinese medicine, could inhibit RANKL-induced osteoclastogenesis and bone resorption in both RAW264.7 cells and BMMs from 1 µM and protect a collagen-induced arthritis (CIA) mouse model from bone destruction in vivo. The severity of arthritis and bone erosion observed in paw joints and the femurs of the CIA model were attenuated by 6-OAP administered at both dosages (1 or 5 mg/kg, i.g.). BMD, Tb.N and BV/TV were also improved by 6-OAP treatment. Histological analysis and TRAP staining of femurs further confirmed the protective effects of 6-OAP on bone erosion, which is mainly due to reduced osteoclasts. Molecular docking indicated that c-Src might be a target of 6-OAP and that phosphorylation of c-Src was suppressed by 6-OAP treatment. CETSA and SPR assay further confirmed the potential interaction between 6-OAP and c-Src. Three signaling molecules downstream of c-Src that are vital to the differentiation and function of osteoclasts, NF-κB, c-Fos and NFATc1, were also suppressed by 6-OAP in vitro. In summary, the results demonstrated that the function of c-Src was disrupted by 6-OAP, which led to the suppression of downstream signaling vital to osteoclast differentiation and function. In conclusion, 6-OAP has the potential to be further developed for the treatment of RA-related bone erosion.

2.
Bioresour Technol ; 400: 130696, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38614144

RESUMO

Understanding large-scale composting under natural conditions is essential for improving waste management and promoting sustainable agriculture. In this study, corn straw (400 tons) and pig manure (200 tons) were composted with microbial inoculants. The thermophilic phase of composting lasted for fourteen weeks, resulting in an alkaline final product. Microbial systems with low-temperature initiation and high-temperature fermentation played a crucial role in enhancing lignocellulose degradation and humic substances (HS) formation. Adding microbes, including Rhodanobacter, Pseudomonas, and Planococcus, showed a positive correlation with degradation rates of cellulose, hemicellulose, and lignin. Bacillus, Planococcus, and Acinetobacter were positively correlated with HS formation. Microorganisms facilitated efficient hydrolysis of lignocelluloses, providing humic precursors to accelerate composting humification through phenolic protein and Maillard pathways. This study provides significant insights into large-scale composting under natural conditions, contributing to the advancement of waste management strategies and the promotion of sustainable agriculture.

3.
Int J Biol Macromol ; 263(Pt 1): 130340, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387642

RESUMO

Filamentous fungi are the main industrial source of cellulases which are important in the process of converting cellulose to fermentable sugars. In this study, transcriptome analysis was conducted on Aspergillus terreus NEAU-7 cultivated using corn stover and glucose as carbon sources. Four putative endoglucanases (EG5A, EG7A, EG12A, and EG12C) from A. terreus NEAU-7 were efficiently expressed in Pichia pastoris. Among them, EG7A exhibited the highest enzyme activity (75.17 U/mg) with an optimal temperature of 40 °C and pH 5.0. EG5A and EG12A displayed specific activities of 19.92 U/mg and 14.62 U/mg, respectively, at 50 °C. EG12C showed acidophilic characteristics with an optimal pH of 3.0 and a specific activity of 12.21 U/mg at 40 °C. With CMC-Na as the substrate, the Km value of EG5A, EG7A, EG12A or, EG12C was, 11.08 ± 0.87 mg/mL, 6.82 ± 0.74 mg/mL, 7.26 ± 0.64 mg/mL, and 9.88 ± 0.86 mg/mL, with Vmax values of 1258.23 ± 51.62 µmol∙min-1∙mg-1, 842.65 ± 41.53 µmol∙min-1∙mg-1, 499.38 ± 20.42 µmol∙min-1∙mg-1, and 681.41 ± 30.08 µmol∙min-1∙mg-1, respectively. The co-treatment of EG7A with the commercial cellulase increased the yield of reducing sugar by 155.77 % (filter paper) and 130.49 % (corn stover). Molecular docking assay showed the interaction energy of EG7A with cellotetraose at -10.50 kcal/mol, surpassing EG12A (-10.43 kcal/mol), EG12C (-10.28 kcal/mol), and EG5A (-9.00 kcal/mol). Root Mean Square Deviation (RMSD) and Solvent Accessible Surface Area (SASA) values revealed that the presence of cellotetraose stabilized the molecular dynamics simulation of the cellotetraose-protein complex over a 100 ns time scale. This study provides valuable insights for developing recombinant enzymes and biomass degradation technologies.


Assuntos
Aspergillus , Celulase , Celulase/química , Simulação de Acoplamento Molecular , Celulose/química , Perfilação da Expressão Gênica , Açúcares
4.
Bioresour Technol ; 393: 130022, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37979883

RESUMO

The aim of this study was to compare the effect of functional inoculant and different nitrogen sources on the relationship among lignocellulose, precursors, and humus as well as their interactions with bacterial genera in straw composting. Results showed that inoculation improved the heating process and retained more nitrate compared to control. Inoculation increased the degradation of lignocellulosic components by 26.9%-81.6% and the formation of humus by 15.7%-23.0%. Bioinformatics analysis showed that inoculation enriched key genera Chryseolinea in complex nitrogen source (pig manure) compost and Pusillimas, Luteimonas, and Flavobacteria in single nitrogen source (urea) compost, which were related to humus formation. Network analysis found that inoculation and urea addition improved the microbial synergistic effect and inoculation combined with pig manure had more complex modularity and interactions. Combining the functional bacterial inoculant with urea helped to enhance the degradation of lignocellulose and humification process during straw composting especially with single nitrogen source.


Assuntos
Compostagem , Animais , Suínos , Nitrogênio/metabolismo , Esterco , Solo , Bactérias/metabolismo , Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...